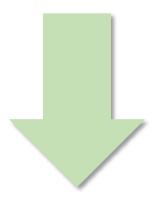


Apheresis: physiology & application


TEGUH TRIYONO

Dept. of Clinical Pathology Faculty of Medicine, Gadjah Mada University RSUP dr. Sardjito Yogyakarta, Indonesia

APHERESIS PROCEDURES

- Worldwide implemented nowadays.
- Most of Asian Countries also involved.
- The usage of this procedure varies between countries.

APHERESIS

- Derived from Greek word "Phaeresis" which means "taking away"
- Apheresis constitutes a number of procedures in which donor/patient blood is processed to remove or manipulate a specific portion of blood.
- The remaining blood is returned back to the donor/patient

APHERESIS IS AIMED TO:

- Collect a therapeutic dose of a particular component e.g. Plateletpheresis
- Therapeutically reduce the circulating amount of a particularly harmful component e.g. TPE
- Collect a particular blood cell/ precursor from a patient for re-infusion e.g. PBSC Collections

SPECTRUM OF APHERESIS

Therapeutic Apheresis

- TPE
- Leukocytapheresis
- Thrombocytapheresis
- Erythrocytapheresis
- RBC exchange
- LDL apheresis
- Adsorptive cytapheresis
- Lymphocytapheresis
- ECP
- Rheopheresis

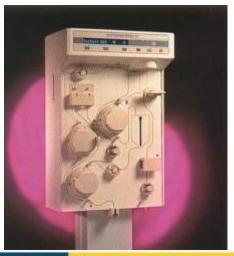
Component Donation

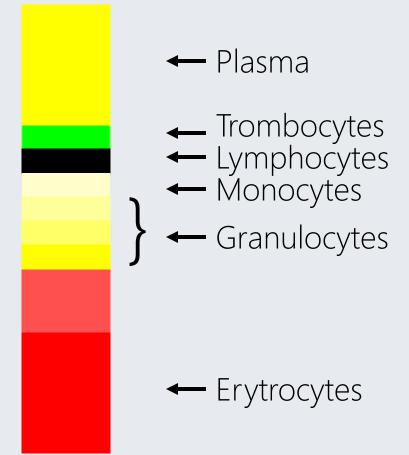
- Platelet
- Red cell
- Plasma

Specific Procedure

PBSC Collection

APHERESIS EQUIPMENT





Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

SEPARATION IN THE SYSTEM



Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

CENTRIFUGE CHANNEL

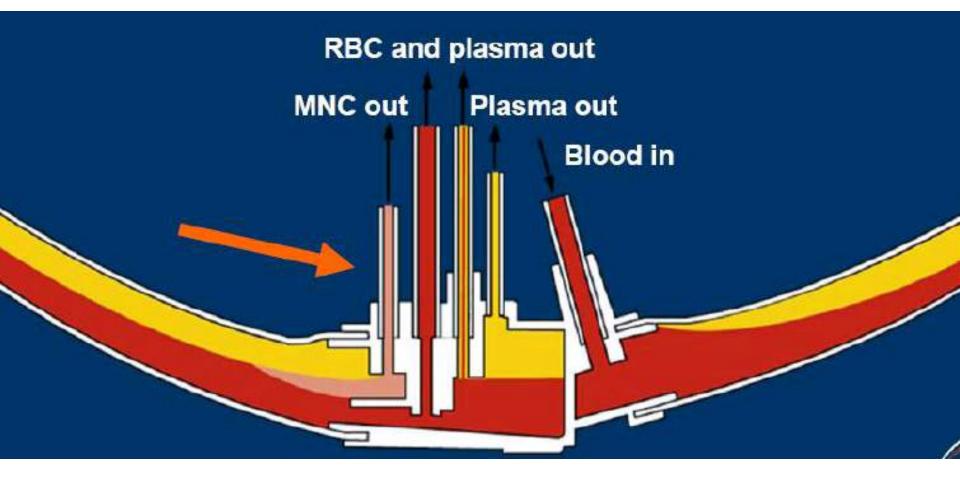
lasma

Platelet

-Granulocyte

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

Buffy Coat

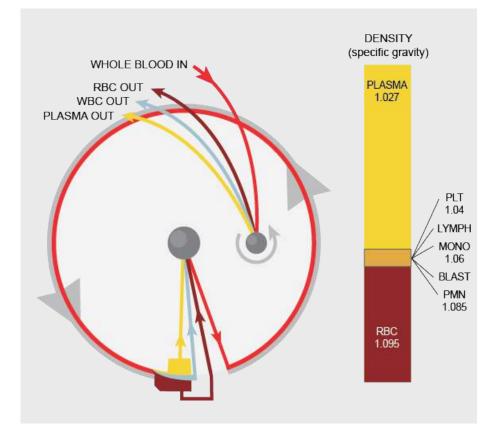

CENTRIFUGE CHANNEL AND 'RPM'

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

10

METHODS OF APHERESIS

- Conventional/ manual
- Automatic/ Cell Separator Machines
 - Intermittent flow separation
 - Continuous flow separation


PRINCIPLE OF PROCEDURES

SEPARATION BY CENTRIFUGATION

Centrifugation

- Separation based on specific gravity
- Continuous flow

Separation based on specific weight / size

Spec Weight (g/mL)		Size (µm
 Plasma 	1.026	
 Platelets 	1.040	1-4
 Lymphocytes 	1.050-1.061	6-10
 Monocytes 	1.077	10-30
 Granulocytes 	1.080 -1.088	10-15
 Erytrocytes 	1.093-1.100	6-8

DONOR APHERESIS

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

ugm.ac.id

14

DONOR APHERESIS

- Plasmapheresis
- Cytaferese
 - Trombocytapheresis
 - Lymphocytapheresis
 - Stemcelapheresis
 - Monocytapheres
 Cell therapy
 - Granulocytapheresis
 - Erytrocytapheresis
- Multicomponent apheresis

15

PLATELET PHERESIS

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

Plateletpheresis : collection of platelets from a donor with return of donor RBCs

Plateletpheresis is the most common application of apheresis

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

2 TYPES OF PLATELET COMPONENTS :

- random donor platelets or whole blood derived platelets (RDP)
- single donor platelets or apheresis platelets (SDP)

PLATELETPHERESIS (SDP)

- 2 to 5 x 10e11 platelet yield
- 30% drop in donor platelet count replaced in
 48 hours
- Low white cell contamination
- •
- Minimal donor red cell loss

Fewer donor reactions than whole blood donations.

PHERESIS PLATELETS

Storage: at 20° C to 24° C under constant agitation. Maximum storage time = 5 days

Therapeutic dose: between $2.0 - 5.0 \times 10^{11}$ Platelets = 4-8 whole blood collections.

Pheresis Donation Vs Whole Blood Donation

Pheresis Donation

- Blood Cell Separator
- Ave 1.5 to 2 hours
- No shows, rejections, deferrals very costly
- Hospital/blood center
- By appointment
- Lab & medical access

Whole Blood Donation

- No specialized equipment
- 10 mins
- More uniform work flow
- Mobile collection
- Walk-ins
- Autonomous operation

Risks Of Platelet Transfusion

Contamination of Platelets

The risk of platelet sepsis is greater with a transfusion of pooled platelet concentrates from multiple donors than from a single donor.

Risks Of Platelet Transfusion

- Platelet transfusion can transmit viral or bacterial disease.
- Contaminating red cells in the product may transmit malaria.
- Graft-versus-host disease (preventable by irradiation)
- Cytomegalovirus (preventable by serological screening)
- Alloimmunization caused by contaminating white cells.

Risks Of Platelet Transfusion

- Leukocyte removed could possibly prevent all these problems, but this is not established.
- Febrile reactions are common and are reduced but not totally eliminated by Leukocyte removal
- Platelet themselves may cause fever.

Advantages of Single Donor Platelets Over Pooled Platelet Concentrate Transfusions

For special feature collections (HLAmatched, CMV-negative)

I ower reaction rate

Lower risk of alloimmunization and transmission of viruses

Increased donor productivity

Advantages of Single Donor Platelets Over Pooled Platelet Concentrate Transfusions

- One Pretransfusion Test
- Lower Cost than Manual Collection
- Prompt Transfusion Possible
- 🌞 Less Unit Handling
- Compliance with Quality System Standards

THERAPEUTIC APHERESIS

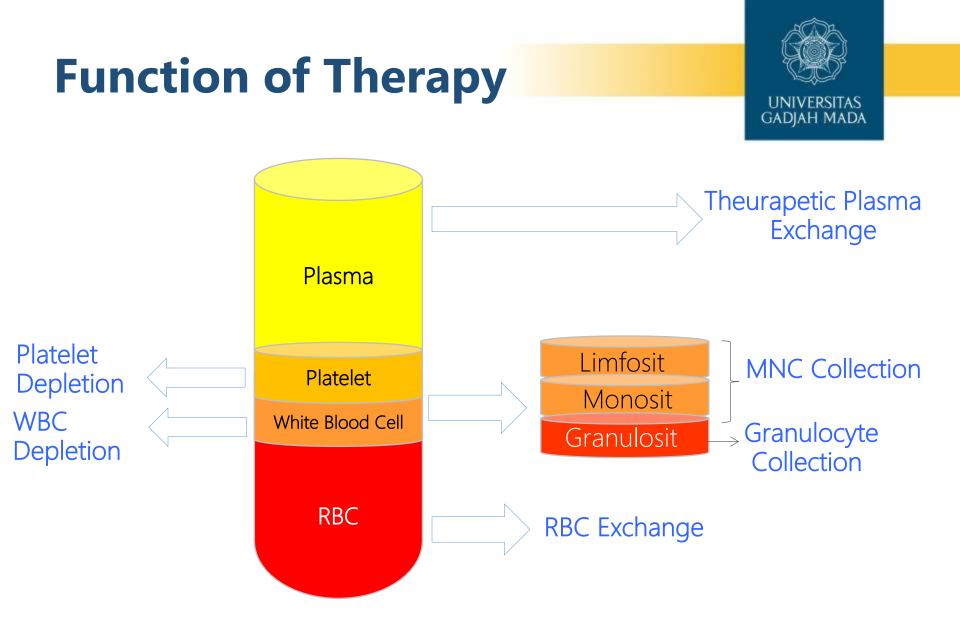
Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

Patient Apheresis (reduction of cells)

Cytaferese

- Trombocytes
- Lymphoblasts
- Myeloblasts
- Erytrocytes

28



Patient Apheresis (exchange)

Plasma exchange

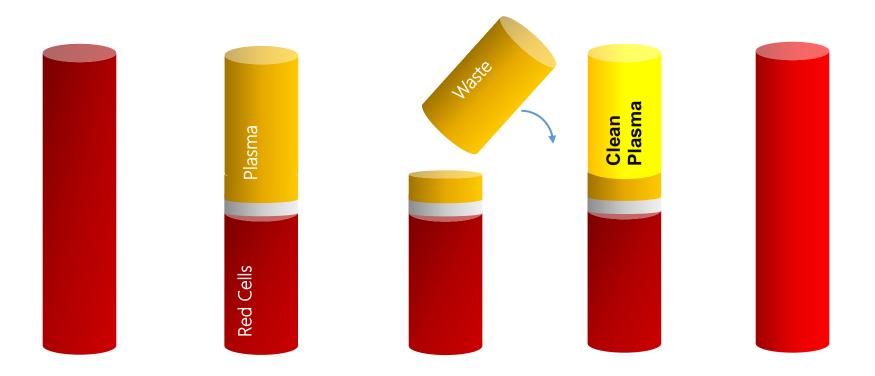
RBC exchange

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

Therapeutic Plasma Exchange (TPE)

A therapeutic procedure in which blood of the patient is passed through a medical device which separates out plasma from other components of blood, the plasma is removed and replaced with a replacement solution such as colloid solution (e.g., albumin and/or plasma) or combination of crystalloid/colloid solution.

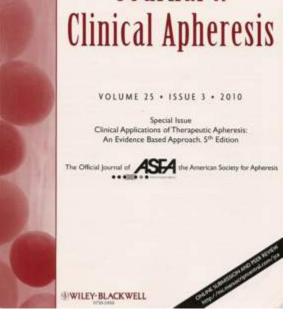


Therapeutic Plasma Exchange (TPE)

- The most common use of TPE is for the treatment of autoimmune or immune mediated diseases or disorders
- TPE removes:
 - Monoclonal antibodies
 - Paraproteins
 - Autoimmune antibodies
 - Antigen-antibody complexes

Therapeutic Plasma Exchange (TPE)

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)



Abnormal Substances Removed From the Circulation by TPE

- 1. Paraproteins (Waldenstorm's Macroglobulinemia)
- 2. Autoantibodies (Myasthenia Gravis, Goodpasture's syn.)
- 3. Lipids (LDL in familial hypercholesterolemia; phynatic acid in refsum's disease)
- 4. Toxins or drugs (that are bound to albumin)
- 5. Circulating immune complexes (CIC)
- 6. Soluble mediators of inflammatory response (activated complement component, vasoactive substances)

Procedural Elements & Practical Considerations

- Venous access
- Replacement fluid
- Normal/abnormal constituents removed
- Anticoagulation
- Patient history and medications
- Frequency and number of procedures
- Complications

Journal of

VENOUS ACCESS

- Require large bore venous catheters to sustain the flow rates required (50-100 ml/min)
- Type of catheters: 17 gauge
- Location:

Peripheral: antecubital fossa

central: femoral/subclavian/jugular

Arteriovenous shunt/fistula

• Number of lines: continuous flow devices : separate lines

REPLACEMENT FLUID

- Must be FDA approved to use with blood products [get mixed with RBC before the return phase]
- Replacement solutions:

Crystalloids-normal saline 0.9%

Colloids–5% albumin; plasma

• Function of the replacement fluid is to

maintain intravascular volume (primary) restoration of important plasma proteins maintenance of colloid osmotic pressure maintenance of electrolyte balance

REPLACEMENT FLUID

TTP/HUS	FFP Cryodepleted FFP Mixtures : Albumin /FFP Albumin /FFP
Neurological	5% Human Albumin
GBS, MG, Stiff-man CIDP	Albumin/Saline (70% /30%)
Renal	5% Human Albumin
(RPGN, FSGS)	Albumin/Saline (70% /30%)
Post Transplant	5% Human Albumin Albumin/Saline (70% /30%) Consider adding FFP at the end if post op

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

Comparison of Replacement Fluids

Replacement fluid	Advantage	disadvantage
Crystalloid	Low cost Hypoallergenic No infectious risk	Hypo-oncotic No coagulation factors No immunoglobulins 2-3 volumes required
Albumin	lso-oncotic No infectious risk	Higher cost No coagulation factors No immunoglobulins
Plasma	Immunoglobulins Coagulation factors Iso-oncotic	Infectious risk Citrate Allergic reactions ABO compatibility

Replacement Fluid and Balance

3 choices of fluid balance (FB): 100% FB –isovolemic –volume replaced=volume removed

<100% FB –hypovolemic ("dry") -volume replaced < volume removed

>100% FB –hypervolemic ("wet") -volume replaced > volume removed

Normal/abnormal Constituents Removed TPE

- TPE:
- One volume exchange removes about 63%-65% of most plasma constituents
- A single two-volume exchange removes about 86% of plasma constituents
- \rightarrow Increasing the volume beyond 1-1.5 volumes has very little impact on removal of plasma constituents

Volume of Patient Plasma Exchanged (PEX)

Little advantage beyond 1.0-1.5 volumes

- 1 pv = 63%↓
- 2 pv = 86%↓
- 3 pv = 95%↓

Removal of IgG and IgM by plasma exchange:

Measure		lgG	lgM
Intravascular amount		45%	76 %
"total body" removal			
•	1.0 PEX vol.	28%	48%
•	1.5 PEX vol.	35%	59%
•	2.0 PEX vol.	39%	65%

ANTICOAGULATION

Anticoagulation citrate Dextrose (ACD):

- Found in human cells, plant cells, and citrus fruits
- Chelates positively charged calcium ions (ionized calcium) and blocks calciumdependent clotting factor reactions
- Works extracorporeally
- Metabolized in the liver almost immediately upon return

- Side effects: hypocalcemia.
- 1 small pts, large vol. of citrated blood, liver dysfunction

• Heparin:

- Prevents conversion of fibrinogen to fibrin and prothrombin to thrombin
- Systemic anticoagulation
- Metabolized slowly 1-2 hours
- Individual sensitivity and elimination rates

Patient History and Medications

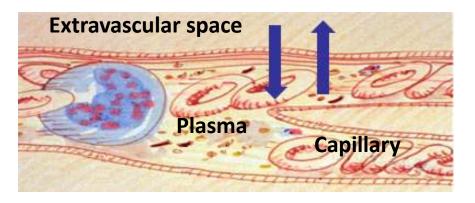
- Does patient have a disease which is amenable to treatment by the requested apheresis procedure
- Does the patient/donor capable of sustaining the fluid shifts associated with apheresis
- Certain medications, most notably antibiotics and anticoagulant can be removed by apheresis -should be given *immediately after the procedure*
- Angiotensin-converting enzymes (ACE) inhibitors

Frequency and Number of Procedures

 Depends on: Disease being treated, Patient signs and symptoms, Lab values

Substance	Volume Treated (ml/kg)	Treatment Interval (hours)	Number of Treatment
Autoantibodies	40-60	24-48	4-6
Immune complexes	40-60	24-48	Treat to response
Paraproteins	40-60	24	Treat to response
Cryproteins	40-60	24-48	Treat to response
Toxins	40-60	24-71	Treat to response
TTP/HUS	40	24	To remission

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)



TPE – Success Factors and Frequency

• Depends on: Disease being treated, Patient signs and symptoms, Lab values

TPE – Success Factors and Frequency

- The success of a TPE procedure is dependent on the:
 - Distribution of disease mediator
 - Volume of plasma removed

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

Complications

- Hypotension
- Vasovagal syncope
- Hypocalcaemia
- Allergic reaction
- Other side effects

Vascular access: hematoma, phlebitis, infection
Air embolism
Loss of blood components: → bleeding
Thrombocytopenia (30% decrease)
Hypofibrinogenemia (50% decrease)

Indications for TA

Journal of Clinical Apheresis 25:83-177 (2010)

Guidelines on the Use of Therapeutic Apheresis in Clinical Practice–Evidence-Based Approach from the Apheresis Applications Committee of the American Society for Apheresis

Zbigniew M. Szczepiorkowski,^{1*†} Jeffrey L. Winters,^{2*} Nicholas Bandarenko,^{3*} Haewon C. Kim,^{4*} Michael L. Linenberger,^{5*} Marisa B. Marques,^{6*} Ravindra Sarode,^{7*} Joseph Schwartz,^{8*} Robert Weinstein,^{9*} and Beth H. Shaz^{10*}

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

UNIVERSITAS GADJAH MADA

J Clin Apheresis

TABLE I. Indications for Therapeutic Apheresis—ASFA 2010 Categories^a

Category	Description
Ι	Disorders for which apheresis is accepted as first-line therapy, either as a primary standalone treatment or in conjunction with other modes of treatment.
	[Example: plasma exchange in Guillain-Barré syndrome as first-line standalone therapy; plasma exchange in myasthenia gravis as first-line in conjunction with immunosuppression and cholinesterase inhibition].
Π	Disorders for which apheresis is accepted as second-line therapy, either as a standalone treatment or in conjunction with other modes of treatment.
	[Example: plasma exchange as standalone secondary treatment for acute disseminated encephalomyelitis after high-dose IV corticosteroid failure; extracorporeal photopheresis added to corticosteroids for unresponsive chronic graft-versus-host disease]
III	Optimum role of apheresis therapy is not established. Decision making should be individualized. [Example: extracorporeal photopheresis for nephrogenic systemic fibrosis; plasma exchange in patients with sepsis and multiorgan failure].
IV	Disorders in which published evidence demonstrates or suggests apheresis to be ineffective or harmful. IRB approval is desirable if apheresis treatment is undertaken in these circumstances. [Example: plasma exchange for active rheumatoid arthritis].

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

J Clin Apheresis

TABLE II. Level of Evidence Used in the ASFA Special Issue 2010^a

Evidence level	Evidence quality	
Type I	Obtained from at least one properly designed randomized controlled trial	
Type II-1	Obtained from a well-designed controlled trials without randomization	
Type II-2	Obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group	
Type II-3	Obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments could also be regarded as this type of evidence	
Type III	Opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees	

J Clin Apheresis

TABLE III. Grading Recommendations Adopted from Guyatt et al. [13]

Recommendation	Description	Methodological quality of supporting evidence	Implications
Grade 1A	Strong recommendation, high-quality evidence	RCTs without important limitations or overwhelming evidence from observational studies	Strong recommendation, can apply to most patients in most circumstances without reservation
Grade 1B	Strong recommendation, moderate quality evidence	RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies	Strong recommendation, can apply to most patients in most circumstances without reservation
Grade 1C	Strong recommendation, low-quality or very low-quality evidence	Observational studies or case series	Strong recommendation but may change when higher quality evidence becomes available
Grade 2A	Weak recommendation, high quality evidence	RCTs without important limitations or overwhelming evidence from observational studies	Weak recommendation, best action may differ depending on circumstances or patients' or societal values
Grade 2B	Weak recommendation, moderate- quality evidence	RCTs with important limitations (inconsistent results, methodological flaws, indirect, or imprecise) or exceptionally strong evidence from observational studies	Weak recommendation, best action may differ depending on circumstances or patients' or societal values
Grade 2C	Weak recommendation, low-quality or very low-quality evidence	Observational studies or case series	Very weak recommendations; other alternatives may be equally reasonable

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)

TERIMA KASIH

PLATELET PHERESIS

Dr. dr. Teguh Triyono, M.Kes Sp.PK (K)