

Coagulation Disorder

Departemen Patologi Klinik dan Kedokteran Laboratorium FKKMK UGM/RSUP Dr. Sardjito Yogyakarta

2020

Coagulation disorders

Inherited

Haemophilia

Acquired

Disseminated intravascular coagulation (DIC)

Liver disease Vitamin K deficiency

Vitamin K antagonist Heparin therapy

Inherited coagulation disorders

Hemophillia

Hemophilia is an inherited bleeding disorder in which there is a deficiency or lack of factor VIII (hemophilia A) or factor IX (hemophilia B)

Haemophilia

Hemophilia A is an X-linked, recessive disorder caused by deficiency of functional plasma clotting factor VIII (FVIII), which may be inherited or arise from spontaneous mutation

Туре	Inheritance	Cause	Frequency
Hemophilia A	X linked recessive	Factor VIII	80%
Hemophilia B	X linked recessive	Factor IX	15%

Diagnosis of Haemophilia

- Normal factor VIII or IX level = 50-150%
- Family history
- Symptoms (bruising, bleeding with circumcision, muscle, joint, or soft tissue bleeding)
- Hemostatic challenges (surgery, dental work, trauma, accidents,)
- Laboratory testing

Grading	Clotting factor level	Clinical features
Severe(60% of hemophilia)	< 1 IU/dL or <1% of normal	Spontaneous bleeding
Moderate (15%)	1-5 IU/dL or 1-5% of normal	Occasional spontaneous bleeding and prolonged bleeding after trauma or surgery
Mild (25%)	5-40 IU/dL or 5-40% of normal	Bleeding after major trauma or surgery

Laboratory findings in hemophilia

- Platelet count: normal
- Bleeding time: normal
- Prolongation APTT
- Normal PT

INHIBITOR to factor VIII? →

Inhibitor screening test

DISSEMINATED INTRAVASCULAR COAGULATION (DIC)

- DIC triggered by the entry of procoagulant material into circulation
- Initiated by widespread endothelial damaged and collagen exposure
- Widespresd intravascular platelet aggregation
- Increased thrombin generation
- Depression of physiologic anticoagulation mechanism
- Delayed removal of fibrin due to impaired fibrinolysis

Pathophysiology of DIC

Figure 2. Pathogenesis of Disseminated Intravascular Coagulation in Sepsis.

Through the generation of proinflammatory cytokines and the activation of monocytes, bacteria cause the up-regulation of tissue factor as well as the release of microparticles expressing tissue factor, thus leading to the activation of coagulation. Proinflammatory cytokines also cause the activation of endothelial cells, a process that impairs anticoagulant mechanisms and down-regulates fibrinolysis by generating increased amounts of plasminogen activator inhibitor.

t-PA = tissue plasminogen activator

PAI-1 = plasminogen activator inhibitor tipe 1

D-dimer (fibrin cross-linked

Laboratory findings in DIC

- Low level of platelet count
- Prolongation of bleeding time
- Prolongation of PT and APTT
- Decreased of fibrinogen
- High level of D-dimer

Liver disease

 The liver is the principal site of synthesis of pro-coagulant, fibrinolytic, and coagulation inhibitory proteins

■ Liver disease →

- 1. Decreased synthesis of coagulation, fibrinolysis and inhibitory proteins
- 2. Impaired clearance of activated haemostatic components

Lab. findings in liver disease

- Early prolongation of PT
- Decreased synthesis of vitamin K dependent proteins → decrease of F. II, VII, IX, X → PT and APTT >>
- Decrease synthesis almost all coagulation factor
- Decreased clearance of activated clotting factors
- Increased fibrinolysis due to decreased antiplasmin
- Dysfibrinogenemia due to synthesis of abnormal fibrinogen
- Increased fibrin split products
- Decreased platelets (hypersplenism)

VITAMIN K DEFICIENCY

VITAMIN K DEFICIENCY

Synthesis of protein vitamin K dependent:

For coagulation factors (II, VII, IX, and X) to become active they have to bind Calcium. This is preceded by carboxylation which is mediated by Vitamin K

 Calcium can only bind after gamma carboxylation of specific glutamic acid residu in proteins

Vitamin K:

- Is fat soluble vitamin, stored in the liver in small amounts so can be depleted in 2-3 days
- Patients with depleted vitamin K or on K antagonists <u>cannot</u> <u>carboxylate</u> these coagulation factors.

Gamma carboxylation of protein plasma by vitamin K

Gamma carboxylation of protein plasma by vitamin K

Vitamin K deficiency → haemorrhagic disease of the Newborn (HDN)

- Early-onset vitamin K deficiency bleeding usually occurs during first 24 hours after birth
- Late-onset vitamin K deficiency bleeding in the newborn
- PT and APTT → >>
- Platelet count: N
- Levels of protein induced by vitamin K antagonism (PIVKA II) are increased

Vitamin K antagonist

Vitamin K antagonist

- Anamnesis
- History
- Bleeding
- Laboratory findings:
 - Prolongation of PT and APTT
 - Therapy monitoring: INR

Heparin therapy

Disadvantages of Using aPTT to Monitor Heparin

- aPTT has variable a response to heparin determined by the different coagulometers and the reagents
 - > There is no aPTT "standard"
 - When the tissue thromboplastin lot changes, a new therapeutic range needs to be established for the new lot of reagent
- Test may be affected by numerous factors other than heparin concentration
 - Baseline elevated aPTT makes titration difficult and inaccurate

Eikelboom JW. Thromb Haemost 2006;96:547-52. Francis JL. Pharmacotherapy 2004;24:108S-19S.

Proposed \rightarrow Antifactor Xa assay \rightarrow ?

THANK YOU