THE RESPIRATORY SYSTEM II

PRASETYASTUTI
DEPT. OF BIOCHEMISTRY
FACULTY OF MEDICINE UGM

Chemichal \& physiologic events affecting diffusion of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$
II. Exchange of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$ during respiration
III. Transport O_{2} in blood

Transport CO_{2} in blood
Respiratory regulation of acid base balance
VI. Measurement of acid base balance : pH of blood
: the interchange of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$ between the body and its environment
Processes :

1. Pulmonary ventilation
2. The difusion $\mathrm{O}_{2} \& \mathrm{CO}_{2}$ between the alveoli and the blood
3. The transport of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$ to and from the cells of the organism via the blood
4. The regulation of ventilation

External Respiration/pulmonary gas exchange

: the diffusion of O 2 from air in the alveoli of the lungs to the blood in pulmonary capillaries and diffusion of CO2 from the blood in pulmonary capillaries to the air in the alveoli of the lungs

Internal Respiration/ systemic gas exchange
: The exchange of O 2 and CO 2 between systemic capillaries and tissue cells
I.Chemichal \& physiologic events affecting diffusion of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$

Boyle's Law
Pressure X Volume $=$ Constant

Gay-Lussac's Law
Volume $=$ Constant X temperature (K)

Ideal Gas Law

$$
P V=n R T
$$

- Dalton's Law
- : each gas in a mixture of gases exerts its own pressure as if no-other gases were present.

The pressure of a specific gas in a mixture is called its partial pressure $\left(P_{x}\right)$

The total pressure of the mixture : by adding all the partial pressures

Atmospheric pressure $(760 \mathrm{mmHg})$

$$
P_{\mathrm{N} 2}+P_{\mathrm{O} 2}+P_{\mathrm{H} 2 \mathrm{O}}+P_{\mathrm{CO} 2}+P_{\text {other gases }}
$$

- The partial pressure determine the movement of O 2 and CO 2 between:
- the atmospheric and lungs
- the lungs and blood
- the blood and body cells.

Each gas diffuses across a permeable membrane from the area where its partial pressure is greater to the area where its partial pressure is less.

The greater the difference in partial pressure, the faster the rate of diffusion

- Atmospheric air contains
- Nitrogen : 78.62\%

Oxygen : 20.84\%

- Carbon dioxide : 0.04\%
- Water : 0.5\%
- At $37^{\circ} \mathrm{C}$, the water vapor pressure is $47 \mathrm{mmHg} \rightarrow$
- The sum of the partial pressures of the other components of air must contribute
$-760-47=713 \mathrm{mmHg}$
- Henry's Law
- : the quantity of a gas that will dissolve in a liquid is proportional to the partial pressure and its solubility.

Much more CO2 is dissolved in blood plasma because the solubility of CO 2 is 24 times greater than that of O 2

N2, has no known effect on bodily functions -- \rightarrow At sea level pressure very little it dissolves in blood plasma because its solubility is very low

Solubility coefficients gases in water at $37^{\circ} \mathrm{C}$ and 1 atm of pressure

Oxygen	0.024
Carbon dioxide	0.57
Carbon monoxide	0.018
Nitrogen	0.012
helium	0.008

The rate of diffusion process be influenced by

- the difference between the partial pressure of the gas above the liquid and its tension within it
- the cross-sectional area of the gas-liquid interphase
- the distance the molecules
- the solubility of the gas in the liquid
- velocity/kinetic movement of the molecules

The rate of pulmonary and systemic gas exchange depends on:

1. Partial pressure difference of the gases
2. Surface area available for gas exchange
3. Diffusion distance
4. Molecular weight and
5. solubility of gases

Regulation of hydrogen ion concentration by the Respiratory System

II. Exchange of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$ during respiration

PO_{2} of the blood as enters the pulmonary cap : 40 mmHg PO_{2} in alveolus : 104 mmHg
surface area of the membrane is large membrane is extremely thin \rightarrow uptake O_{2} from the alveolus into the pulmonary cap blood uccurs rapidly

Gas Exchange in Lungs \& Tissues

Normal Blood Gas values

Pammeter	Anterial	Mired Venous	Gapllary
ph	71957.45	9191.41	1335145
Pb_{6}	\$0.10 minhy	35.4 mming	Less lixa ditital
0, paradion	9594.948	9\%\%.5\%	Less hand areitial
Pm_{2}	33.4 mmH	4.5.5 5 mmg	33.45 minty
HCO_{3}	M 2.6 nepl	20.66 meq	
Ind C0, cometer	20:17 mex	M 10 mex	20.27 meg
Bacesems	$420-2$	4. 20.0	420-2

III. Transport of O_{2} in blood

O_{2} is transported by the blood either,

- Combined with haemoglobin (Hb) in the red blood cells (>98\%) or,
Dissolved in the blood plasma (<2\%).
Hemoglobine
- is the principal molecule responsible for transport $\mathrm{O}_{2} \& \mathrm{CO}_{2}$ in blood
- normally, $97-98 \% \mathrm{O}_{2}$ transported from the lungs to the tissues is carried in reversible combination with the Hb molecule

Haemoglobin

When 4 O2's are bound to haemoglobin, it is 100% saturated, with fewer O2's it is partially saturated.

Oxygen binding occurs in response to the high PO2 in the lungs

$\mathrm{Hb}+\mathrm{O}_{2} \leftarrow-\cdots \rightarrow \mathrm{HbO}_{2}$

The degree combination of O_{2} with Hb or dissociation of $\mathrm{HbO} \mathrm{O}_{2}$ to release O_{2} is determined by PO_{2} in medium surrounding the Hb

At the $\mathrm{PO}_{2} 104 \mathrm{mmHg}: \mathrm{Hb} \pm 97 \%$ saturated at the $\mathrm{PO}_{2} 40 \mathrm{mmHg}: \mathrm{Hb}$ is 70% saturated

Haemoglobin Saturation

- Haemoglobin saturation is the amount of oxygen bound by each molecule of haemoglobin
- Each molecule of haemoglobin can carry four molecules of 02 .
- When oxygen binds to haemoglobin, it forms OXYHAEMOGLOBIN;
- Haemoglobin that is not bound to oxygen is referred to as DEOXYHAEMOGLOBIN.

The relationship between the \% saturation of the Hb in blood \& PO_{2} of the blood The oxygen dissociation curve of Hb $\rightarrow--\rightarrow$ dependent upon the PCO_{2} in the blood

When fully saturated :
1 g Hb combines with $1.34 \mathrm{ml} \mathrm{O}_{2}$
[Hb] : $14.5 \mathrm{~g} / \mathrm{dl}$ of blood $-\rightarrow$
The total O_{2} that could be carried as HbO would be :

$$
14.5 \times 1.34=19.4 \mathrm{ml} / \mathrm{dl} \text { blood }
$$

$\rightarrow+$ the amount of O_{2} physically dissolved in blood $0.33 \mathrm{ml} / \mathrm{dl}------\rightarrow$ the total
O_{2} capacity of blood approximately $20 \mathrm{ml} / \mathrm{dl}$
------ \rightarrow it is evident that the O_{2} capacity of the blood is almost entirely a function of the blood Hb concentration

Transport of O_{2}

- 1.5% dissolved in plasma
- $-98,5 \%$ as $\mathrm{Hb}-\mathrm{O}_{2}$

The shape of the $\mathrm{O}_{2}-\mathrm{Hb}$ dissociation curve is "sigmoid"
Is that of normal, pH of blood 7.4 and PCO_{2} 40 mmHg at sea level

The property of $\mathrm{Hb}-\mathrm{O}_{2}$ interaction result from 2 properties important to the transport of O_{2}

The relatively flat portion of the curve above an O_{2} tension of $70-80 \mathrm{mmHg}$ result minimal loss of O_{2} from Hb
2. the precipitous change of the curve below a PO_{2} of 40 mmHg ensures that a
Disproportionately greater release of O_{2} from Hb will occur at any given decline in PO_{2}

- a shift of the dissociation curve to the right result in greater release of O_{2} from the HbO 2 at a given PO_{2} (decreases the affinity of Hb for O_{2})
- - a shift to the left increases the affinity of Hb forO 2

The factors that bring about a rightward shift of HbO2 dissociation:

1. increased H^{+}or acidity (decreased blood pH) decreases the affinity of Hb for O_{2})

Lactic acid, carbonic acid (from active tissue) bring about a rightward shift of HbO 2 dissociation:

Increased blood pH --- increases the affinity of Hb for O_{2})
A shift of the HbO 2 dissociation curve to the left
2. increased CO_{2} tension $=$ Bohr effect
3. increased temperature
in situations where there are increased demands for O_{2} by the tissue
4. Increased erythrocyte concentration of 2.3 DPG under stressful situations (decreased atm press)

Association $\mathrm{Hb}+\mathrm{BPG}$---- decreases the affinity of Hb for O_{2})

- tiroksin, GH,epinefrin, norepi \&testosteron - ---- increases formation of BPG
- BPG increase in person who lived in high altitute
- A shift of the HbO2 dissociation curve to the left
- - is an incereased content of HbF in the erythrocytes
- Carbon Monoxide
- Haemoglobin binds with carbon monoxide 240 times more readily than with oxygen. The presence of carbon monoxide on one of the 4 haem sites causes the oxygen on the other haem sites to bind with greater affinity. This makes it difficult for the haemoglobin to release the oxygen to the tissues and has the effect of shifting the curve to the left. With an increased level of carbon monoxide, a person can suffer from severe hypoxemia while maintaining a normal pO2.
- Effects of Methemoglobinemia
- Methemoglobinemia is a form of abnormal haemoglobin where ferrous (Fe^{2+}), which is normally found in haemoglobin, is converted to the ferric ($\mathrm{Fe} 3+$) state. This causes a leftward shift in the curve and prevents oxygen from being released

- The Bohr effect.
IV. Transport CO_{2} in blood

In the blood

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow--\mathrm{H}_{2} \mathrm{CO}_{3}----\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

Carbonic anhidrase enzyme (present in erythrocyte) that catalyzes the reaction, inhibited by acetazol amide
99.9% completion, only 0.1% remains in the undissociated form

Carbon Dioxide Transport

Method

Percentage

- Dissolved in Plasma

$$
7-10 \%
$$

Chemically Bound to Hemoglobin in RBC's 20-30 \%

- As Bicarbonate Ion in

Plasma
$60-70 \%$

\square Dissolved
\square bound to Hb
\square HCO3-

- At rest, the metabolizing tissue cells consume about 250 ml of O 2 and produce about 200 ml of carbon dioxide each minute.
- $\mathrm{C} 6 \mathrm{H} 12 \mathrm{O} 6+6 \mathrm{O} 2>6 \mathrm{CO} 2+6 \mathrm{H} 2 \mathrm{O}+$ ATP
- The newly formed carbon dioxide is transported from the tissue cells to the lungs by six different mechanisms, three in plasma and three in RBC's.

In Plasma

- About 1% of the CO2 that dissolves in the plasma chemically combines with free aminogroups and forms a carbamino compound.
- About 5\% of the CO2 that dissolves in plasma ionizes as bicarbonate.
- Dissolved CO2 in the plasma accounts for about 5% of the total CO2 released at the lungs.

In Red Blood Cells

- Dissolved CO2 in the intracellular fluid of the RBC's accounts for about 5% of the total CO2 released at the lungs.
- About 21% of the CO2 combines with the RBC hemoglobin to form carbamino- Hb .
- Most of the CO2 (about 63\%) is transported from the tissue cells to the lungs in the form of bicarbonate.

Hb is the major buffer in the blood
That removes the free hidrogen ion from blood to form a protonated Hb
$\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}+\mathrm{KHb}\left\langle---\mathrm{HHb}+\mathrm{K}^{+}+\mathrm{HCO}_{3}^{-}\right.$

- occurs only within the red cell \rightarrow impermeable to $\mathrm{K}^{+}----\rightarrow$ permeable to $\mathrm{HCO}_{3}^{-}-\rightarrow$ diffuse out of erythrocyte in to the plasma $---\rightarrow$ another anion must enter the erythrocyte --- Cl^{-}

The exchange between bic and Cl ion across the erythrocyte membrane :
the chloride shift
The phenomena the binding of O_{2} to Hb displaces CO_{2} Haldane effect

CO_{2}

 Transport and Cl^{-}Movement

 Transport and Cl^{-}Movement}

Body tissue
 Blood capillary

V.Respiratory regulation of acid base balance

The buffering power of a buffer system is greatest at a $\mathrm{pH}=$ to its pKa
The pH extracellular body fluids is 7.4
pKa of the bicarbonate- CO_{2} buffer system
is 6.1
Handerson - Hasselbalch equation
[salt]
$\mathrm{pH}=\mathrm{pKa}+\log$

[acid]

$\left[\mathrm{HCO}_{3}{ }^{-}\right]$
$7.4=6.1+\log$
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
$\left[\mathrm{HCO}_{3}{ }^{-}\right]$
$1.3=\log$
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
$\left[\mathrm{HCO}_{3}^{-}\right] \quad 20$
Anti $\log 1.3=20-\rightarrow$
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \quad 1$

ACID-BASE REGULATION

Maintenance of an acceptable pH range in the extracellular fluids is accomplished by three mechanisms:

1) Chemical Buffers

- React very rapidly
(less than a second)

2) Respiratory Regulation

- Reacts rapidly (seconds to minutes)

3) Renal Regulation

- Reacts slowly (minutes to hours)

Chemical Buffers

- The body uses pH buffers in the blood to guard against sudden changes in acidity
- A pH buffer works chemically to minimize changes in the pH of a solution

Buffer

Buffer System Pairs

Weak Acid

Weak Base
\% Total Buffer Action

Carbonic Acid Hemoglobin

Oxyhemoglobin

Plasma Protein
Acid Organic phosphate

Acid Inorganic

Sodium Bicarbonate 53
Potasisum
Hemoglobinate
Potassium 35
Oxyhemoglobin
Proteinate
7
Alkaline Organic 3 phosphate

Alkaline Inorganic
2

\lrcorner Respiratory Regulation

- Carbon dioxide is an important by-product of metabolism and is constantly produced by cells
- The blood carries carbon dioxide to the lungs where it is exhaled

Respiratory Regulation

When breathing is increased, the blood carbon dioxide level decreases and the blood becomes more Base

- When breathing is decreased, the blood carbon dioxide level increases and the blood becomes more Acidic
- By adjusting the speed and depth of breathing, the respiratory control centers and lungs are able to regulate the blood pH minute by minute

Kidney Regulation

- Excess acid is excreted by the kidneys, largely in the form of ammonia
- The kidneys have some ability to alter the amount of acid or base that is excreted, but this generally takes several days

Acid Base imbalance

Acid-base disturbance

1. Respiratory acidosis

Common Cause :

- Respiratory depression (drugs, central nervous system trauma)
- Pulmonary disease (pneumonia, chronic obstructive pulmonary disease, respiratory underventilation)

Mode of compensation

- Kidneys will retain increased amounts of $\mathrm{HCO}_{3 / \text { sub) }}$ to increase pH
II. Respiratory alkalosis

Common Cause :

- Hyperventilation (emotions, pain, respirator overventilation)

Mode of compensation

- Kidneys will excrete increased amounts of $\mathrm{HCO}_{3 / \text { sub> to lower pH }}$
III. Metabolic acidosis

Common Cause :

- Diabetes, shock, renal failure, intestinal fistula

Mode of compensation

- Lungs "blow off" CO_{2} to raise pH
IV. Metabolic alkalosis

Common Cause :

- Sodium bicarbonate overdose, prolonged vomiting, nasogastric drainage
- Hypokalemia- K \& H change
- Hypochloremia- HCO3 cation Balance
- Excessive streoids- Increases Renal clearance
Mode of compensation
- Lungs retain CO_{2} to lower Ph

SOURCE: Pagana, K.D. and T.J. Pagana. Mosby's Diagnostic and Laboratory Test Reference. 3rd ed. St. Louis: Mosby, 1997.

